

A DISTRIBUTED SIMULATOR FOR NEURAL NETWORKS TRAINING

Sorin Babii* and Vladimir Creţu**

* Department of Computers, “Politehnica” University of Timişoara,
Faculty of Automation and Computers, V. Pârvan 2, Timişoara, Romania

Phone: (40) 256-404059, Fax: (40) 256-403214,
E-Mail: sorin@cs.utt.ro, WWW: http://www.cs.utt.ro/~sorin

** Department of Computers, “Politehnica” University of Timişoara,
Faculty of Automation and Computers, V. Pârvan 2, Timişoara, Romania

Phone: (40) 256-403255, Fax: (40) 256-403214,
E-Mail: vcretu@cs.utt.ro, WWW: http://www.cs.utt.ro/~vcretu

Abstract: This paper presents a distributed simulator for neural networks – NetPar, and
the results of several experiments in distributing the training phase of an artificial neural
network. We developed and analyzed a distribution strategy for the back-propagation
algorithm.

We describe a distributing procedure of the well-known algorithm of back-propagation,
and implemented this algorithm on several networks of computers, which allowed us to
evaluate and analyze the performances using the results of actual experiments. We were
interested in the qualitative aspects, trying to understand the factors which determine the
behavior of this distributed algorithm. We tried to emphasize some specific aspects to be
considered when implementing such a parallel algorithm on a set of workstations,
interconnected in a local area network. Also, we investigated the possibilities to exploit
the computational resources of such a set of workstations.

Keywords: neural networks, back-propagation algorithm, parallel algorithms, distributed
algorithms, computers network.

1. INTRODUCTION

The training phase for a neural network needs a
considerable computational effort. There are millions
of floating point multiplications, even for small size
networks and applications. Moreover, the neural
networks need a large amount of memory. These are
the reasons for which working with neural networks
is time-consuming activity, drastically limiting the
size of the applications.

There are some ways to compensate these
disadvantages. The first approach consists in
reducing the size of the problem by pre-processing
the input data, obtaining a reduced number of
iterations needed for training, or even a smaller
neural network. These changes are almost always

problem-specific and this approach cannot be
generalized for all kind of problems.

Another possibility is to enhance the performance of
the back-propagation algorithm (see Rumelhart et al.,
1986), either by modifying it according to a specific
problem, either using results from numerical
optimization theory, like applying the conjugate

gradient method (see Johansson et al., 1991).

A third approach consists in accelerating the actual
algorithms by hardware implementing them (using
VLSI techniques or optical), or changing them to
operate on a parallel architecture.

We used this last approach: to distribute the
back-propagation training algorithm over a set of

computers in a local area network. Unlike other
implementations, (see Pomerleau et al., 1988;
Pétrowski et al., 1989; Singer 1990; Cosnard et al.,
1991; Pétrowski et al., 1993; Tørresen, 1996;
Tørresen and Tomita, 1998) which distribute the
neural network in dedicated architectures with
multiple processors, our algorithm was implemented
in a simulator – NetPar, which distributes the neural
network over a set of workstations. We will show
that this is a promising approach, when considering
the reduced cost of the equipment.

2. NETWORK PARTITIONING

When converting a sequential algorithm into a
parallel one, we have to consider at least two
strategies. Talking about neural networks, these two
strategies are known as data partitioning, and
network partitioning.

If the same algorithm is applied several times on
different data sets, we can execute these applications
concurrently, on different processors, with
completely independent tasks. This strategy is known
as job parallelism or data partitioning, or, sometimes
— for obvious reasons — training parallelism.

Another approach is using the so-called geometric or
spatial parallelism. In this approach the execution of
the algorithm is parallelized over a single data set, by
distributing the data over the processors so that all
necessary data for a processor is stored locally or
they are easily accessed from neighbor processors.

This strategy is also known (see Pomerleau et al.,
1988) as network partitioning, as the processing of a
pattern can be parallelized by dividing the neural
network, every processor having to deal with a small

piece of the network.

2.1 Dividing the network.

If we want to distribute the units and weights over a
set of processors, it cannot be done in too many
ways. One possibility is to divide the network
horizontally, in three parts, so that a processor will
contain the units from a given layer. This is not a
very good idea, since usually the network does not
have too many layers, so we cannot use too many
processors. Moreover, the forward and the backward
steps are in fact sequential and only the units in a
single layer evolving in parallel, making this
parallelization scheme impossible.

The network can be divided vertically, so that the
units in a layer are evenly distributed among
processors. In this way, each processor will hold
units from all the layers. There are two methods to
distribute the weights:

1)All weights for the connections incoming into a
unit are stored into the processor which
simulates that unit.

2)All weights for the connections leaving a unit

are stored into the processor which simulates
that unit.

In fact, there is no difference between these two
strategies, since in the first case the forward step is
simple to parallelize while the backward step will be
a little difficult. If we choose the second strategy, it
will be the other way round.

We selected the first strategy. All the units are evenly
distributed among processors, so that all processors
store the same number of input, hidden and output
units, although it is not necessary that the number of
processors to divide the number of units in a layer. In
this case, some processors will simulate one extra
unit than others. To simplify, we will consider that
the number of units in any layer is divided by the
number of processors.

The weights in the network are distributed as in the
first strategy: the processor which simulates a hidden
or output unit will store the weights for the
connections incoming to that unit, like in Fig. 1 – we
represented the weights in the processor number 1.

Fig. 1. Distribution of units and weights.

The processors are in a ring topology, which is easy
to extend to include more elements, and can contain
any number of processors. Maybe other topologies
would be of interest, but this is another subject.

Even if each processors simulates only some input
and hidden units, all the processors have to store the
activation of all input and hidden units, since this is
needed both in the forward step and the backward
step of the back-propagation algorithm. By storing
the activation value of all units we avoid some
supplemental communications.

All the processors execute the same program, even
there is an administrator and some slaves, but the
administrator role differs only when there are
input/output operations.

2.2 The Algorithm

The parallelization consists of seven steps, two steps
for the forward propagation and five steps for the
backward propagation.

The first step computes the activation of the hidden
units. In fact there are two sub-steps, one for the
distribution of input units activations, based on
equation (1), and the second for the actual evaluation
of the hidden units activations, as in equation (2).
Since the values are needed again in step six, when
the weight changes are computed, the entire vector of
inputs unit activations is stored for later use, after it
was received from the other processors.

net j

H
a

I
w i j

H

i 0

NI 1

ai

I
w i j

H
, j H p (1)

a j

H
f net j

H
, j H p (2)

The step two computes the output units activations
and is very similar to the first step. Again, we need to
store the values of all hidden units activations.

netk

O

j 0

NH 1

a j

H
w j k

O

q 0

P 1

a q

H
w q k

O
, k O p (3)

The third step evaluates the output unit delta values,
which can be done exclusively local.

k

O
t k ak

O
ak

O
1 ak

O
, k O p (4)

In the fourth step we calculate the hidden units delta
value. This step is very similar to step two, as it
consists of a vectorial product. Still, we need weights
stored on other processors. Since we used the first
approach in distributing the weights, for this
backward computations we had to implement a
special communication procedure in order to collect
all the values required for these calculi.

j

H
a j

H
1 a j

H O
w j

O

a
j

H 1 a
j

H

k 0

NO 1

k

O
w

j k

O
, j H

p

 (5)

We rewrote equation (5) to emphasize the sums over
processors:

j

H
a j

H
1 a j

H

k 0

NO 1

k

O
w j k

O

a
j

H
1 a

j

H

q 0

P 1

q

O
w

j q

O
, j H

p

 (6)

The last sum is over all processors. Each term can be
computed only by the processor which stores the
specified weights and delta values. As a result, if

j H a is the index of a hidden unit simulated by
processor a, processor b can compute the terms

b

O
w j b

O
needed by processor a when computing

the values a

H
. We developped a communication

scheme which needs P-1 sequential steps, with P
transmissions at each step.

The fifth step computes the weight changes between
the hidden and the output layers; all the hidden units
activations were stored in step two, so the processors
can calculate all weight changes with local data
exlusively.

w j k

O
n 1 k

O
a j

H
w j k

O
n (7)

The step six is similar to step five, except we
compute the weight changes for the weights between
the input and the hidden layers. Again, since all the
input activations were stored locally in step one, this
step can be done exclusively local.

wi j

H
n 1 j

H
ai

I
wi j

H
n (8)

Step seven is the actual changing of all the weights,
and can be performed only with local data, without
communication.

3. EXPERIMENTAL RESULTS

We run the parallelization on nets of different sizes
with varying numbers of processors, in order to
understand what factors determine the behavior of
the algorithm. In order to measure the performance
compared to the sequential verion, the nets are
simply nets of convenient sizes, not nets for real
applications, and no actual learning takes place.

We defined the speedup as the ratio of the execution

time T seq needed by the sequential algorithm and

the execution time T par for the parallel algorithm
using P when both algorithms are applied to te same
problem:

S P def

T seq

T par P
 (9)

We also define the efficiency as the ratio of the
speedup obtained and the optimal one. If we assume
that the maximal S(P) that can be obtained is P, we
will use for efficiency the formula:

E P def

S P

P

T seq

T par P
 (10)

Obviously, the values for E(P) are between 0 and 1.

We tried to construct the algorithm so that a
minimum amount of communication is performed.

One advantage of this algorithm is the low memory
requirements. We distributed the weights, activations
and delta values of the net uniformly among the
processors, but the activation values of all input and
hidden units are stored on all processors, because
these values are used twice. The memory

requirement of each processor (number of double64)
is:

NI NH PH 2 PO 2 NI 1 PH NH 1 PO (11)

Where:

NI is the number of input units,
NH is the number of hidden units,
NO is the number of output units,
PI is the number of input units simulated by each
processor
PH is the number of input units simulated by
each processor
PO is the number of input units simulated by
each processor

In the following we will present the results of the
algorithm when executing on a network consisting of
up to 16 SunBlade 150 workstations, in a 100MB/s
network. Each graph presents the average over sets of
10 experiments for the same configuration.

3.1 Results of Varying the Net Size

The following graph presents the efficiency graph
using the maximum number of workstations (16).
Both the sequential and parallel simulators are
executed on nets of exactly the same sizes.

Fig. 2 presents the results for the 16 SunBlades, with
nets of sizes such that the number of units simulated
by each of the 16 processors varies from 1 to 20 —
nets of 16 input, hidden and output units, 32 input,
hidden and output units and so forth.

Fig. 2. Efficiency when varying the net size.

In this way, we simulated, from each layer 1, 2, and
so on units.

We can see that when there is only one unit per
processor in each of the three layers, the efficiency is
very low, around 35%, and it raises when adding
units. With around seven units per processor the
efficiency stabilizes on a value of 80-85%,
apparently the highest efficiency we can hope to
obtain, even if we add more processors into the ring.

3.2 Results of Varying the Number of Processors

In the following experiments the size of the net is
unchanged and the number of processor is varied.
The size of the net was chosen such that the
maximum number of processors (16) divides the
number of units in each layer.

We used nets with 320 units in each layer. To note
that it is almost not possible to run the program for 1
or 2 processors on a real application, due to the
extreme demands of memory used to store the
weights. The values in the graph from Fig. 3 for these
processor numbers are based on a modified version
which reuses memory. Of course, this version is not
able to learn any task, but we have built it to get the
execution times.

Fig. 3. Acceleration when varying the number of

processors.

The graph shows the advantage of distributing the
weights among the processors. With a net of such a
size it is not possible to use a sequential program,
unless the processor is equipped with more memory
or uses an extensive memory swapping.

We can simulate very large nets when the number of
processors is large.

3.3 Results of Scaling the Net with the Number of
Processors

In the next experiments we scaled the net with the
number of processors, such that the number of units
from each layer per processor is the same, i.e. when
using P processors we had nets of P-P-P, with one
unit from each layer on a processor, 2P-2P-2P, with
2 units from each layer on a processor, and so forth
with 3, 5 and 10 units per processor. The graphs in
Fig. 4 show the efficiency for 2 to 16 SunBlades.

The graphs show, as expected, that simulating nets
with few units per processor gives a low efficiency.
With a larger number of units per processor, the
efficiency is almost constant, with horizontal lines. If
we assume that graphs continue this way for larger
number of processors, we can specify if it is possible

to use more processors for a given task. The
condition is to have enough units per processor; for
one or two units per processor the efficiency is too
low.

Fig. 4. Efficiency when scaling the net with the

number of processors

4. CONCLUSIONS

We developed a distributed simulator for training
with the back-propagation algorithm, which uses a
partitioning of the network. We tried to reduce the
communication to a level which has little effect on
the algorithm. We demonstrated that it is possible to
simulate a large neural network, which requires a
large amount of memory.

A large number of processors can only be applied
efficiently when large neural networks are simulated.

ACKNOWLEDGMENTS

We are thankful to Alcatel Romania, who kindly
allowed us to perform the experiments on one of their
network.

REFERENCES

Cosnard, M., and Mignot, J.C. and Paugam-Moisy,

H. (1991). Implementations of Multilayer Neural
Networks on Parallel Architectures, 2nd
International Specialist Seminar on “Parallel
Digital Processors”, Lisbon.

Johansson, E.M. and Dowla, F.U. and Goodman,
D.M. (1991). Back-propagation learning for
multi-layer feed-forward neural networks using
the conjugate gradient method. International

Journal of Neural Systems, vol. 2, pp. 291-302.
Pétrowski, A. and Personnaz, L. and Dreyfus, G. and

Girault, C. (1989). Parallel Implementations of
Neural Network Simulations. In: Hypercube and

Distributed Computers, (F. André & J.P. Verjus
Eds.), Amsterdam: North Holland, pp. 205-218.

Pétrowski, A. and Dreyfus, G. and Girault, C. (1993).
Performance analysis of a pipelined
backpropagation algorithm. IEEE Trans. on
Neural Networks, vol. 4, pp. 970--981.

Pomerleau, D.A. and Gusciora, D.L. and Touretzky,
D.S. and Kung, H.T. (1988). Neural Network
Simulation at Warp Speed: How We Got 17
Million Connections per Second. IEEE Second

International Conference on Neural Networks
(2nd ICNN'88), IEEE, vol.II, pp.143-150.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J.
(1986). Learning Internal Representations by
Error Propagation. In: Parallel Distributed
Processing — Explorations in the
Microstructure of Cognition (D. E. Rumelhart
and J. L. McClelland (Eds.)), pp. 318-362,
Volume 1 — Foundations. A Bradford Book,
MIT Press.

Singer, A. (1990). Implementations of Artificial
neural networks on the Connection Machine,
Parallel Computing, vol. 14, pp. 305-315.

Tørresen, Jim (1996). Parallelization of
Backpropagation Training for Feed-Forward
Neural Networks. PhD. thesis.

Tørresen, Jim and Tomita, Shinji (1998). A Review
of Parallel Implementations of Backpropagation
Neural Networks. In: Parallel Architectures for
Artificial Neural Networks (N. Sundararajan and
P. Saratchandran (editors)) Chapter 2, IEEE CS
Press. ISBN 0-8186-8399-6G.

