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Abstract: This paper presents a distributed simulator for neural networks – NetPar, and 
the results of several experiments in distributing the training phase of an artificial neural 
network. We developed and analyzed a distribution strategy for the back-propagation 
algorithm. 
 
We describe a distributing procedure of the well-known algorithm of back-propagation, 
and implemented this algorithm on several networks of computers, which allowed us to 
evaluate and analyze the performances using the results of actual experiments. We were 
interested in the qualitative aspects, trying to understand the factors which determine the 
behavior of this distributed algorithm. We tried to emphasize some specific aspects to be 
considered when implementing such a parallel algorithm on a set of workstations, 
interconnected in a local area network. Also, we investigated the possibilities to exploit 
the computational resources of such a set of workstations. 
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algorithms, computers network. 

 
 
 

 

1. INTRODUCTION 
 

The training phase for a neural network needs a 
considerable computational effort. There are millions 
of floating point multiplications, even for small size 
networks and applications. Moreover, the neural 
networks need a large amount of memory. These are 
the reasons for which working with neural networks 
is time-consuming activity, drastically limiting the 
size of the applications. 
 
There are some ways to compensate these 
disadvantages. The first approach consists in 
reducing the size of the problem by pre-processing 
the input data, obtaining a reduced number of 
iterations needed for training, or even a smaller 
neural network. These changes are almost always 

problem-specific and this approach cannot be 
generalized for all kind of problems. 
 
Another possibility is to enhance the performance of 
the back-propagation algorithm (see Rumelhart et al., 
1986), either by modifying it according to a specific 
problem, either using results from numerical 
optimization theory, like applying the conjugate 

gradient method (see Johansson et al., 1991). 
 
A third approach consists in accelerating the actual 
algorithms by hardware implementing them (using 
VLSI techniques or optical), or changing them to 
operate on a parallel architecture. 
 
We used this last approach: to distribute the 
back-propagation training algorithm over a set of 



computers in a local area network. Unlike other 
implementations, (see Pomerleau et al., 1988; 
Pétrowski et al., 1989; Singer 1990; Cosnard et al., 
1991; Pétrowski et al., 1993; Tørresen, 1996; 
Tørresen and  Tomita, 1998) which distribute the 
neural network in dedicated architectures with 
multiple processors, our algorithm was implemented 
in a simulator – NetPar, which distributes the neural 
network over a set of workstations. We will show 
that this is a promising approach, when considering 
the reduced cost of the equipment. 
 
 

2. NETWORK PARTITIONING 

 
When converting a sequential algorithm into a 
parallel one, we have to consider at least two 
strategies. Talking about neural networks, these two 
strategies are known as data partitioning, and 
network partitioning. 
 
If the same algorithm is applied several times on 
different data sets, we can execute these applications 
concurrently, on different processors, with 
completely independent tasks. This strategy is known 
as job parallelism or data partitioning, or, sometimes 
— for obvious reasons — training parallelism. 
 
Another approach is using the so-called geometric or 
spatial parallelism. In this approach the execution of 
the algorithm is parallelized over a single data set, by 
distributing the data over the processors so that all 
necessary data for a processor is stored locally or 
they are easily accessed from neighbor processors. 
 
This strategy is also known (see Pomerleau et al., 
1988) as network partitioning, as the processing of a 
pattern can be parallelized by dividing the neural 
network, every processor having to deal with a small 

piece of the network. 
 
 
2.1 Dividing the network. 

 
If we want to distribute the units and weights over a 
set of processors, it cannot be done in too many 
ways. One possibility is to divide the network 
horizontally, in three parts, so that a processor will 
contain the units from a given layer. This is not a 
very good idea, since usually the network does not 
have too many layers, so we cannot use too many 
processors. Moreover, the forward and the backward 
steps are in fact sequential and only the units in a 
single layer evolving in parallel, making this 
parallelization scheme impossible. 
 
The network can be divided vertically, so that the 
units in a layer are evenly distributed among 
processors. In this way, each processor will hold 
units from all the layers. There are two methods to 
distribute the weights: 
 

1)All weights for the connections incoming into a 
unit are stored into the processor which 
simulates that unit. 

 
2)All weights for the connections leaving a unit 

are stored into the processor which simulates 
that unit. 

 
In fact, there is no difference between these two 
strategies, since in the first case the forward step is 
simple to parallelize while the backward step will be 
a little difficult. If we choose the second strategy, it 
will be the other way round. 
 
We selected the first strategy. All the units are evenly 
distributed among processors, so that all processors 
store the same number of input, hidden and output 
units, although it is not necessary that the number of 
processors to divide the number of units in a layer. In 
this case, some processors will simulate one extra 
unit than others. To simplify, we will consider that 
the number of units in any layer is divided by the 
number of processors. 
 
The weights in the network are distributed as in the 
first strategy: the processor which simulates a hidden 
or output unit will store the weights for the 
connections incoming to that unit, like in Fig. 1 – we 
represented the weights in the processor number 1. 
 

Fig. 1. Distribution of units and weights. 
 
The processors are in a ring topology, which is easy 
to extend to include more elements, and can contain 
any number of processors. Maybe other topologies 
would be of interest, but this is another subject. 
 
Even if each processors simulates only some input 
and hidden units, all the processors have to store the 
activation of all input and hidden units, since this is 
needed both in the forward step and the backward 
step of the back-propagation algorithm. By storing 
the activation value of all units we avoid some 
supplemental communications. 
 
All the processors execute the same program, even 
there is an administrator and some slaves, but the 
administrator role differs only when there are 
input/output operations. 
 
 
 



2.2 The Algorithm 

 
The parallelization consists of seven steps, two steps 
for the forward propagation and five steps for the 
backward propagation. 
 
The first step computes the activation of the hidden 
units. In fact there are two sub-steps, one for the 
distribution of input units activations, based on 
equation (1), and the second for the actual evaluation 
of the hidden units activations, as in equation (2). 
Since the values are needed again in step six, when 
the weight changes are computed, the entire vector of 
inputs unit activations is stored for later use, after it 
was received from the other processors. 
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The step two computes the output units activations 
and is very similar to the first step. Again, we need to 
store the values of all hidden units activations. 
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The third step evaluates the output unit delta values, 
which can be done exclusively local. 
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In the fourth step we calculate the hidden units delta 
value. This step is very similar to step two, as it 
consists of a vectorial product. Still, we need weights 
stored on other processors. Since we used the first 
approach in distributing the weights, for this 
backward computations we had to implement a 
special communication procedure in order to collect 
all the values required for these calculi. 
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We rewrote equation (5) to emphasize the sums over 
processors: 
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The last sum is over all processors. Each term can be 
computed only by the processor which stores the 
specified weights and delta values. As a result, if 

j H a is the index of a hidden unit simulated by 
processor a, processor b can compute the terms  

b

O
w j b

O
needed by processor a when computing 

the values  a

H
. We developped a communication 

scheme which needs P-1 sequential steps, with P 
transmissions at each step. 
 
The fifth step computes the weight changes between 
the hidden and the output layers; all the hidden units 
activations were stored in step two, so the processors 
can calculate all weight changes with local data 
exlusively. 
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The step six is similar to step five, except we 
compute the weight changes for the weights between 
the input and the hidden layers. Again, since all the 
input activations were stored locally in step one, this 
step can be done exclusively local. 
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Step seven is the actual changing of all the weights, 
and can be performed only with local data, without 
communication. 
 
 

3. EXPERIMENTAL RESULTS 
 
We run the parallelization on nets of different sizes 
with varying numbers of processors, in order to 
understand what factors determine the behavior of 
the algorithm. In order to measure the performance 
compared to the sequential verion, the nets are 
simply nets of convenient sizes, not nets for real 
applications, and no actual learning takes place. 
 
We defined the speedup as the ratio of the execution 

time T seq  needed by the sequential algorithm and 

the execution time T par  for the parallel algorithm 
using P when both algorithms are applied to te same 
problem: 
 

S P def

T seq

T par P
 (9) 

 
We also define the efficiency as the ratio of  the  
speedup obtained and the optimal one. If we assume 
that the maximal S(P) that can be obtained is P,  we 
will use for efficiency the formula: 
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S P
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Obviously, the values for E(P) are between 0 and 1. 
 
We tried to construct the algorithm so that a 
minimum amount of communication is performed. 
 
One advantage of this algorithm is the low memory 
requirements. We distributed the weights, activations 
and delta values of the net uniformly among the 
processors, but the activation values of all input and 
hidden units are stored on all processors, because 
these values are used twice. The memory 



requirement of each processor (number of double64) 
is: 
 

NI NH PH 2 PO 2 NI 1 PH NH 1 PO (11) 

 
Where: 
 

NI is the number of input units, 
NH is the number of hidden units, 
NO is the number of output units, 
PI is the number of input units simulated by each 
processor 
PH is the number of input units simulated by 
each processor 
PO is the number of input units simulated by 
each processor 

 
In the following we will present the results of the 
algorithm when executing on a network consisting of 
up to 16 SunBlade 150 workstations, in a 100MB/s 
network. Each graph presents the average over sets of 
10 experiments for the same configuration. 
 
 
3.1 Results of Varying the Net Size 

 
The following graph presents the efficiency graph 
using the maximum number of workstations (16). 
Both the sequential and parallel simulators are 
executed on nets of exactly the same sizes. 
 
Fig. 2 presents the results for the 16 SunBlades, with 
nets of sizes such that the number of units simulated 
by each of the 16 processors varies from 1 to 20 — 
nets of 16 input, hidden and output units, 32 input, 
hidden and output units and so forth. 
 

 
Fig. 2. Efficiency when varying the net size. 
 
In this way, we simulated, from each layer 1, 2, and 
so on units. 
 
We can see that when there is only one unit per 
processor in each of the three layers, the efficiency is 
very low, around 35%, and it raises when adding 
units. With around seven units per processor the 
efficiency stabilizes on a value of 80-85%, 
apparently the highest efficiency we can hope to 
obtain, even if we add more processors into the ring. 
 

 
3.2 Results of Varying the Number of Processors 
 
In the following experiments the size of the net is 
unchanged and the number of processor is varied. 
The size of the net was chosen such that the 
maximum number of processors (16) divides the 
number of units in each layer. 
 
We used nets with 320 units in each layer. To note 
that it is almost not possible to run the program for 1 
or 2 processors on a real application, due to the 
extreme demands of memory used to store the 
weights. The values in the graph from Fig. 3 for these 
processor numbers are based on a modified version 
which reuses memory. Of course, this version is not 
able to learn any task, but we have built it to get the 
execution times. 

 
Fig. 3. Acceleration when varying the number of 

processors. 
 
The graph shows the advantage of distributing the 
weights among the processors. With a net of such a 
size it is not possible to use a sequential program, 
unless the processor is equipped with more memory 
or uses an extensive memory swapping.  
 
We can simulate very large nets when the number of 
processors is large. 
 
 
3.3 Results of Scaling the Net with the Number of 
Processors 

 
In the next experiments we scaled the net with the 
number of processors, such that the number of units 
from each layer per processor is the same, i.e. when 
using P processors we had nets of P-P-P, with one 
unit from each layer on a processor, 2P-2P-2P, with 
2 units from each layer on a processor, and so forth 
with 3, 5 and 10 units per processor. The graphs in 
Fig. 4 show the efficiency for 2 to 16 SunBlades. 
 
The graphs show, as expected, that simulating nets 
with few units per processor gives a low efficiency. 
With a larger number of units per processor, the 
efficiency is almost constant, with horizontal lines. If 
we assume that graphs continue this way for larger 
number of processors, we can specify if it is possible 



to use more processors for a given task. The 
condition is to have enough units per processor; for 
one or two units per processor the efficiency is too 
low. 

 
Fig. 4. Efficiency when scaling the net with the 

number of processors 
 
 

4. CONCLUSIONS 
 
We developed a distributed simulator for  training 
with the back-propagation algorithm, which uses a 
partitioning of the network. We tried to reduce the 
communication to a level which has little effect on 
the algorithm. We demonstrated that it is possible to 
simulate a large neural network, which requires a 
large amount of memory. 
 
A large number of processors can only be applied 
efficiently when large neural networks are simulated. 
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